2,599 research outputs found

    Active inference under visuo-proprioceptive conflict: Simulation and empirical results

    Get PDF
    It has been suggested that the brain controls hand movements via internal models that rely on visual and proprioceptive cues about the state of the hand. In active inference formulations of such models, the relative influence of each modality on action and perception is determined by how precise (reliable) it is expected to be. The 'top-down' affordance of expected precision to a particular sensory modality is associated with attention. Here, we asked whether increasing attention to (i.e., the precision of) vision or proprioception would enhance performance in a hand-target phase matching task, in which visual and proprioceptive cues about hand posture were incongruent. We show that in a simple simulated agent-based on predictive coding formulations of active inference-increasing the expected precision of vision or proprioception improved task performance (target matching with the seen or felt hand, respectively) under visuo-proprioceptive conflict. Moreover, we show that this formulation captured the behaviour and self-reported attentional allocation of human participants performing the same task in a virtual reality environment. Together, our results show that selective attention can balance the impact of (conflicting) visual and proprioceptive cues on action-rendering attention a key mechanism for a flexible body representation for action

    Attentional Modulation of Vision Versus Proprioception During Action

    Get PDF
    To control our actions efficiently, our brain represents our body based on a combination of visual and proprioceptive cues, weighted according to how (un)reliable—how precise—each respective modality is in a given context. However, perceptual experiments in other modalities suggest that the weights assigned to sensory cues are also modulated “top-down” by attention. Here, we asked whether during action, attention can likewise modulate the weights (i.e., precision) assigned to visual versus proprioceptive information about body position. Participants controlled a virtual hand (VH) via a data glove, matching either the VH or their (unseen) real hand (RH) movements to a target, and thus adopting a “visual” or “proprioceptive” attentional set, under varying levels of visuo-proprioceptive congruence and visibility. Functional magnetic resonance imaging (fMRI) revealed increased activation of the multisensory superior parietal lobe (SPL) during the VH task and increased activation of the secondary somatosensory cortex (S2) during the RH task. Dynamic causal modeling (DCM) showed that these activity changes were the result of selective, diametrical gain modulations in the primary visual cortex (V1) and the S2. These results suggest that endogenous attention can balance the gain of visual versus proprioceptive brain areas, thus contextualizing their inf luence on multisensory areas representing the body for action

    Free-energy and the brain

    Full text link
    If one formulates Helmholtz's ideas about perception in terms of modern-day theories one arrives at a model of perceptual inference and learning that can explain a remarkable range of neurobiological facts. Using constructs from statistical physics it can be shown that the problems of inferring what cause our sensory input and learning causal regularities in the sensorium can be resolved using exactly the same principles. Furthermore, inference and learning can proceed in a biologically plausible fashion. The ensuing scheme rests on Empirical Bayes and hierarchical models of how sensory information is generated. The use of hierarchical models enables the brain to construct prior expectations in a dynamic and context-sensitive fashion. This scheme provides a principled way to understand many aspects of the brain's organisation and responses.In this paper, we suggest that these perceptual processes are just one emergent property of systems that conform to a free-energy principle. The free-energy considered here represents a bound on the surprise inherent in any exchange with the environment, under expectations encoded by its state or configuration. A system can minimise free-energy by changing its configuration to change the way it samples the environment, or to change its expectations. These changes correspond to action and perception respectively and lead to an adaptive exchange with the environment that is characteristic of biological systems. This treatment implies that the system's state and structure encode an implicit and probabilistic model of the environment. We will look at models entailed by the brain and how minimisation of free-energy can explain its dynamics and structure

    Evidence for surprise minimization over value maximization in choice behavior

    Get PDF
    Classical economic models are predicated on the idea that the ultimate aim of choice is to maximize utility or reward. In contrast, an alternative perspective highlights the fact that adaptive behavior requires agents' to model their environment and minimize surprise about the states they frequent. We propose that choice behavior can be more accurately accounted for by surprise minimization compared to reward or utility maximization alone. Minimizing surprise makes a prediction at variance with expected utility models; namely, that in addition to attaining valuable states, agents attempt to maximize the entropy over outcomes and thus 'keep their options open'. We tested this prediction using a simple binary choice paradigm and show that human decision-making is better explained by surprise minimization compared to utility maximization. Furthermore, we replicated this entropy-seeking behavior in a control task with no explicit utilities. These findings highlight a limitation of purely economic motivations in explaining choice behavior and instead emphasize the importance of belief-based motivations

    A probabilistic interpretation of PID controllers using active inference

    Get PDF
    In the past few decades, probabilistic interpretations of brain functions have become widespread in cognitive science and neuroscience. The Bayesian brain hypothesis, predictive coding, the free energy principle and active inference are increasingly popular theories of cognitive functions that claim to unify understandings of life and cognition within general mathematical frameworks derived from information and control theory, statistical physics and machine learning. The connections between information and control theory have been discussed since the 1950’s by scientists like Shannon and Kalman and have recently risen to prominence in modern stochastic optimal control theory. However, the implications of the confluence of these two theoretical frameworks for the biological sciences have been slow to emerge. Here we argue that if the active inference proposal is to be taken as a general process theory for biological systems, we need to consider how existing control theoretical approaches to biological systems relate to it. In this work we will focus on PID (Proportional-Integral-Derivative) controllers, one of the most common types of regulators employed in engineering and more recently used to explain behaviour in biological systems, e.g. chemotaxis in bacteria and amoebae or robust adaptation in biochemical networks. Using active inference, we derive a probabilistic interpretation of PID controllers, showing how they can fit a more general theory of life and cognition under the principle of (variational) free energy minimisation under simple linear generative models.most common types of regulators employed in engineering and more recently used to explain behaviour in biological systems, e.g. chemotaxis in bacteria and amoebae or robust adaptation in biochemical networks. Using active inference, we derive a probabilistic interpretation of PID controllers, showing how they can fit a more general theory of life and cognition under the principle of (variational) free energy minimisation under simple linear generative models

    Comparing families of dynamic causal models

    Get PDF
    Mathematical models of scientific data can be formally compared using Bayesian model evidence. Previous applications in the biological sciences have mainly focussed on model selection in which one first selects the model with the highest evidence and then makes inferences based on the parameters of that model. This “best model” approach is very useful but can become brittle if there are a large number of models to compare, and if different subjects use different models. To overcome this shortcoming we propose the combination of two further approaches: (i) family level inference and (ii) Bayesian model averaging within families. Family level inference removes uncertainty about aspects of model structure other than the characteristic of interest. For example: What are the inputs to the system? Is processing serial or parallel? Is it linear or nonlinear? Is it mediated by a single, crucial connection? We apply Bayesian model averaging within families to provide inferences about parameters that are independent of further assumptions about model structure. We illustrate the methods using Dynamic Causal Models of brain imaging data

    Cortical beta oscillations reflect the contextual gating of visual action feedback

    Get PDF
    In sensorimotor integration, the brain needs to decide how its predictions should accommodate novel evidence by 'gating' sensory data depending on the current context. Here, we examined the oscillatory correlates of this process by recording magnetoencephalography (MEG) data during a new task requiring action under intersensory conflict. We used virtual reality to decouple visual (virtual) and proprioceptive (real) hand postures during a task in which the phase of grasping movements tracked a target (in either modality). Thus, we rendered visual information either task-relevant or a (to-be-ignored) distractor. Under visuo-proprioceptive incongruence, occipital beta power decreased (relative to congruence) when vision was task-relevant but increased when it had to be ignored. Dynamic causal modelling (DCM) revealed that this interaction was best explained by diametrical, task-dependent changes in visual gain. These novel results suggest a crucial role for beta oscillations in the contextual gating (i.e., gain or precision control) of visual vs proprioceptive action feedback, depending on concurrent behavioral demands

    Bridging the Gap between Probabilistic and Deterministic Models: A Simulation Study on a Variational Bayes Predictive Coding Recurrent Neural Network Model

    Full text link
    The current paper proposes a novel variational Bayes predictive coding RNN model, which can learn to generate fluctuated temporal patterns from exemplars. The model learns to maximize the lower bound of the weighted sum of the regularization and reconstruction error terms. We examined how this weighting can affect development of different types of information processing while learning fluctuated temporal patterns. Simulation results show that strong weighting of the reconstruction term causes the development of deterministic chaos for imitating the randomness observed in target sequences, while strong weighting of the regularization term causes the development of stochastic dynamics imitating probabilistic processes observed in targets. Moreover, results indicate that the most generalized learning emerges between these two extremes. The paper concludes with implications in terms of the underlying neuronal mechanisms for autism spectrum disorder and for free action.Comment: This paper is accepted the 24th International Conference On Neural Information Processing (ICONIP 2017). The previous submission to arXiv is replaced by this version because there was an error in Equation

    Reinforcement learning or active inference?

    Get PDF
    This paper questions the need for reinforcement learning or control theory when optimising behaviour. We show that it is fairly simple to teach an agent complicated and adaptive behaviours using a free-energy formulation of perception. In this formulation, agents adjust their internal states and sampling of the environment to minimize their free-energy. Such agents learn causal structure in the environment and sample it in an adaptive and self-supervised fashion. This results in behavioural policies that reproduce those optimised by reinforcement learning and dynamic programming. Critically, we do not need to invoke the notion of reward, value or utility. We illustrate these points by solving a benchmark problem in dynamic programming; namely the mountain-car problem, using active perception or inference under the free-energy principle. The ensuing proof-of-concept may be important because the free-energy formulation furnishes a unified account of both action and perception and may speak to a reappraisal of the role of dopamine in the brain
    corecore